Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition
نویسندگان
چکیده
Moso bamboo, well known for its high growth rate, is being subjected to increasing amounts of nitrogen deposition. However, how anthropogenic management practices regulate the effects of N deposition on Moso bamboo stoichiometry remains poorly understood. We observed the effects of two years of simulated N deposition (30, 60 and 90 kg N ha(-1)yr(-1)) on the foliar stoichiometry of Moso bamboo plantations under conventional management (CM) and intensive management (IM). Young bamboo had significantly greater foliar N and P concentrations and N:P ratios than mature plants (P < 0.05). IM significantly increased the foliar N concentrations of young bamboo and P concentrations of mature bamboo but decreased mature bamboo foliar N:P ratios (P < 0.05). Nitrogen increased foliar N and P concentrations in IM bamboo plantations, but the positive effects were diminished when the addition rate exceeded 60 kg N ha(-1)yr(-1). Nitrogen increased foliar N concentrations but aggravated P deficiency in CM bamboo plantations. The positive effects of N deposition on foliar stoichiometry were influenced by management practices and bamboo growth stage. The effects of N deposition on foliar stoichiometry combined with anthropogenic management practices can influence ecosystem production, decomposition, and subsequent N and P cycles in Moso bamboo plantations.
منابع مشابه
Nitrogen Deposition Enhances Photosynthesis in Moso Bamboo but Increases Susceptibility to Other Stress Factors
Atmospheric nitrogen (N) deposition can increase the susceptibility of vascular plants to other stresses, but the physiological basis of such a response remains poorly understood. This study was designed to clarify the physiological mechanisms and to evaluate bioindicators of N deposition impact on vascular plants. We evaluate multiple physiological responses to ~4 years of simulated additional...
متن کاملNitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations
Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bam...
متن کاملLithological control on phytolith carbon sequestration in moso bamboo forests
Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg(-1)) > granite (1.6 g kg(-1)) > basalt (1....
متن کاملEffects of moso bamboo encroachment into native, broad-leaved forests on soil carbon and nitrogen pools
Across southern China, Moso bamboo has been encroaching on most neighboring secondary broad-leaved forests and/or coniferous plantations, leading to the land cover changes that alter abiotic and biotic conditions. Little is known about how this conversion alters soil carbon (C) and nitrogen (N). We selected three sites, each with three plots arrayed along the bamboo encroachment pathway: moso b...
متن کاملChanges in Soil Biochemical Properties in a Cedar Plantation Invaded by Moso Bamboo
Moso bamboo (Phyllostachys edulis) is one of the widely growing bamboo species in Asia. Because of its fast growth and aggressive rhizomes, it is reported to invade other forests and reduce the biodiversity of forest ecosystems. To determine the changes in soil nutrient conditions due to moso bamboo invasion, this research measured the difference in soil labile carbon (C) and nitrogen (N) conte...
متن کامل